## Exponents calculator

The Online exponents calculator with the negative numbers is presented here to aid you with calculations.

[Math_m_Exponents_calculator]

* Use the e for the scientific notation.

## Exponents laws and rules

The exponent formula that is used to find the result:

*a ^{ n}* =

*a*×

*a*×

*…*×

*a*

n times

The base a is raised to the power of n, which is apparently equal to the n times of the multiplication of the value of a.

For example,

2^{5} = 2×2×2×2×2 = 32

**Multiplying the exponents**

*a*^{n }⋅ *a*^{m }= *a*^{n+m}

Example: 2^{3 }⋅ 2^{4 }= 2^{(3+4) }= 2^{7 }= 2×2×2×2×2×2×2 = 128

*a*^{n }⋅ *b ^{n}* = (

*a*⋅

*b*)

^{ n}

Example: 2^{2 }⋅ 3^{2 }= (2⋅3)^{2 }= 6^{2 }= 36

**Dividing exponents**

*a*^{n }/ *a*^{m }= *a*^{n–m}

Example: 3^{5 }/ 3^{3 }= 3^{(5-3) }= 3^{2 }= 9

*a*^{n }/ *b ^{n}* = (

*a*/

*b*)

^{ n}

Example: 6^{2 }/ 2^{2 }= (6/2^{)2 }= 3^{2 }= 9

**Power of exponent**

(*a*^{n})^{m }= *a*^{n⋅m}

Example: (2^{3})^{4 }= 2^{(3 ⋅ 4) }= 2^{12 }= 4096

**Radical of exponent**

^{m}√(*a*^{n}) = *a*^{n/m}

Example: ^{2}√(2^{6}) = 2^{(6 / 2) }= 2^{3 }= 8

**Negative exponent**

*a*^{ -n }= 1 / *a*^{ n}

Example: 3^{-3 }= 1 / 3^{3 }= 1 / 27

**Zero exponent**

*a*^{ 0 }= 1

Example: 5^{0 }= 1